Nonorientable hamilton cycle embeddings of complete tripartite graphs

نویسندگان

  • Mark N. Ellingham
  • Justin Z. Schroeder
چکیده

A cyclic construction is presented for building embeddings of the complete tripartite graph Kn,n,n on a nonorientable surface such that the boundary of every face is a hamilton cycle. This construction works for several families of values of n, and we extend the result to all n with some methods of Bouchet and others. The nonorientable genus of Kt,n,n,n, for t ≥ 2n, is then determined using these embeddings and a surgical method called the ‘diamond sum’ technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientable Hamilton Cycle Embeddings of Complete Tripartite Graphs I: Latin Square Constructions

Abstract. In an earlier paper the authors constructed a hamilton cycle embedding of Kn,n,n in a nonorientable surface for all n ≥ 1 and then used these embeddings to determine the genus of some large families of graphs. In this two-part series, we extend those results to orientable surfaces for all n 6= 2. In part I, we explore a connection between orthogonal latin squares and embeddings. A pro...

متن کامل

Orientable Hamilton Cycle Embeddings of Complete Tripartite Graphs II: Voltage Graph Constructions and Applications

In an earlier paper the authors constructed a hamilton cycle embedding of Kn,n,n in a nonorientable surface for all n ≥ 1 and then used these embeddings to determine the genus of some large families of graphs. In this two-part series, we extend those results to orientable surfaces for all n 6= 2. In part II, a voltage graph construction is presented for building embeddings of the complete tripa...

متن کامل

The nonorientable genus of joins of complete graphs with large edgeless graphs

We show that for n = 4 and n ≥ 6, Kn has a nonorientable embedding in which all the faces are hamilton cycles. Moreover, when n is odd there is such an embedding that is 2-facecolorable. Using these results we consider the join of an edgeless graph with a complete graph, Km +Kn = Km+n − Km, and show that for n ≥ 3 and m ≥ n − 1 its nonorientable genus is d(m − 2)(n − 2)/2e except when (m,n) = (...

متن کامل

Triangular embeddings of complete graphs

In this paper we describe the generation of all nonorientable triangular embeddings of the complete graphs K12 and K13. (The 59 nonisomorphic orientable triangular embeddings of K12 were found in 1996 by Altshuler, Bokowski and Schuchert, and K13 has no orientable triangular embeddings.) There are 182, 200 nonisomorphic nonorientable triangular embeddings for K12, and 243, 088, 286 for K13. Tri...

متن کامل

Quadrangular embeddings of complete graphs∗

Hartsfield and Ringel proved that a complete graph Kn has an orientable quadrangular embedding if n ≡ 5 (mod 8), and has a nonorientable quadrangular embedding if n ≥ 9 and n ≡ 1 (mod 4). We complete the characterization of complete graphs admitting quadrangular embeddings by showing that Kn has an orientable quadrilateral embedding if n ≡ 0 (mod 8), and has a nonorientable quadrilateral embedd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 312  شماره 

صفحات  -

تاریخ انتشار 2012